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Summary. Microtine rodents are known to show extreme 
population variations (cycles) but non-cyclic populations 
have also been recognized during recent years. The cyclic 
populations have been widely thought to be regulated by 
intrinsic mechanisms. However, such predictions for cyclic 
populations are usually not applicable to non-cyclic ones 
and extrinsic factors may have to be included in any expla- 
nation. 

A hypothesis that the degree of fluctuations in small 
rodent numbers is related to the sustainable number of gen- 
eralist predators was tested on mainly literature data by 
computing "indices of cyclicity" for local populations. 
These indices were related to latitude and snow cover (two 
measures) as these variables will affect the amount of alter- 
native prey available for these generalists. Within Fenno- 
scandia such indices for Clethrionomys glareolus and Micro- 
tus agrestis were clearly positively related to latitude and 
snow cover. The fraction of populations with summer de- 
clines in numbers, characterizing highly cyclic populations, 
increased in the same way. Cyclicity indices in Great Britain 
were similar to those in southern Fennoscandia, both areas 
being poor in snow, but were higher at the same latitudes 
in eastern Europe with more snow. Indices of density varia- 
tions were generally low in North American Clethrionomys 
species and very variable in Microtus species. 

The gradients observed and differences between conti- 
nents are interpreted as due to microtine-vegetation interac- 
tions in northern European areas poor in generalist preda- 
tors but with important small mustelid predation, and to 
similar snowshoe hare-vegetation interactions in mainly 
Canada-Alaska, where small rodents may serve as alterna- 
tive prey for numerically fluctuating hare predators, at least 
in the forests. Western European microtine populations, 
and probably many others, seem to be regulated by general- 
ist predators. 

1. Introduction 

Small rodents frequently fluctuate in numbers and often 
these fluctuations are termed "cyclic" (Krebs and Myers 
1974). Cyclic fluctuations, however, seldom or never show 
very regular amplitudes and frequencies but are character- 
ized by a gradual increase to peak numbers and sometimes 
a sudden drop to very low numbers which prevail for an 
extended period. There are often 3-5 years between succes- 
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sive lows. However, it has recently been realized that many 
small rodent populations show less violent dynamics and 
only fluctuate seasonally in abundance (Hansson 1971; 
Fuller 1977; Mihok and Fuller 1982; Krebs 1979; Bashen- 
ina 1981 ; Jensen 1982; Taitt and Krebs 1985). Such popula- 
tions have been termed non-cyclic to denote that they still 
may exhibit erratic density variations. 

Hansson (1971, 1979a) and Erlinge et al. (1983) argue 
that non-cyclic vole populations in southern Scandinavia 
are kept at low density and only fluctuate seasonally in 
numbers because of a strong functional response by gener- 
alist predators. Such predators, however, will only be effec- 
tive in regions with a sustaining amount of alternative prey. 
The numbers and total density of alternative prey species 
generally decreases northwards (Simpson 1964). Density 
compensation in the sense of Case (1975) is hardly appli- 
cable as resources generally diminish northwards and there 
is no evidence of such a compensation. Generalist predators 
should thus be least effective in regulating microtine popu- 
lations in northern Fennoscandia (for long-term data on 
"typical microtine cycles" in northern Fennoscandia; see 
Tast and Kalela 1971; Lahti et al. 1976; Henttonen et al. 
1977; Hansson 1979a; Hansson etal. 1978; Laine and 
Henttonen 1983). Furthermore, increased snow cover is as- 
sumed to make the hunting of generalist predator species 
less effective in northern than in southern Fennoscandia. 
There are few studies of predation in relation to snow cover 
but e.g. great grey shrikes (Lanius excubitor) change from 
small mammals to birds as prey with increasing snow depth 
(Olsson 1984). Thus the buffering effect by generalist preda- 
tors is predicted to decrease northwards and small rodent 
populations will increase towards food-limitation; in this 
area the role of specialist predators will increase at least 
at population declines (Hansson 1979 a; Laine and Hent- 
tonen 1983). 

Here we analyse this hypothesis further by examining 
variation in microtine population density in several geo- 
graphic regions. We will concentrate on the following ques- 
tions critical for the hypothesis: 

1) How does the amplitude of population fluctuations 
increase with latitude in Fennoscandia? 

2) Will variation in rodent numbers be better related 
to snow conditions than to latitude? 

3) Will density variations in western Europe be similar 
to those in southern Scandinavia where the amount of snow 
is similar? Will density variation in eastern Europe (incl. 
European parts of the U.S.S.R.) be greater than at the same 



latitudes in southern Scandinavia, which would be consis- 
tent with the idea that snow makes the hunting of generalist 
predators less effective? 

4) Will density variation in North America increase 
northwards and will density variations be greater in North 
America than those at the same latitudes in Fennoscandia 
where the Gulf Stream ameliorates the climate? 

5) An important question would also be whether there 
is any threshold length of time and/or depth of snow cover 
related to cyclicity? We cannot, however, study this in detail 
because of the unpredictability of  environmental conditions 
in the appropriate regions. 

We will make our comparisons on two common and 
widespread European microtine species, viz. the bank vole 
Clethrionomys glareolus and the field vole Microtus agrestis. 
They are distributed from northern Fennoscandia to west- 
ern and eastern Europe. They do not occur in North Amer- 
ica but may be compared there with their taxonomical and 
ecological equivalents (cf. Merritt 1981; Klimkiewicz 1970) 
Clethrionomys gapperi and Microtus pennsylvanicus. We 
also compare the dynamics of two other small rodent spe- 
cies which occur in both northernmost Europe and north- 
ernmost North America, viz. Clethrionomys rutilus and Mi- 
crotus oeconomus. 

2. Methods 

We have examined all known (to us until summer 1983) 
Fennoscandian trapping series covering four years or more. 
One reason for this lower limit is that population cycles 
in northern Scandinavia usually extend over four years be- 
tween a population low and a subsequent peak-decline. A 
shorter number of years will cause great random effects 
in indices of cyclicity for these northern areas (cf. Hent- 
tonen et al. 1985) while three years may be enough in south- 
ern Fennoscandia and central Europe. Index trapping 
methods (with the index usually expressed as number 
caught per 100 trap nights) and density estimations have 
both been included. However, in density estimations only 
numbers actually caught have been used for our computa- 
tions. 

Fennoscandian island data were excluded from our 
analysis because the dynamics of  insular rodent populations 
differ from those of mainland populations (e.g. Tamarin 
1978; Pokki 1982). We have not made any use of sign indi- 
ces (e.g. grazing frequencies) or questionnaires on vole 
abundance as valid, quantitative population estimates can- 
not be computed from such data. 

We have mainly used series from outside Europe that 
have been published in major ecological journals. Longer 
series that contain discontinuities have been treated as two 
or more series because trapping methods or density levels 
may vary between subseries (e.g. Southern and Lowe 1982). 

I f  there were continuous data in the same trapping series 
from two or more intermingled habitats only the data from 
the habitat with the highest densities were used because 
densities in suboptimal habitats are influenced by immigra- 
tion from the optimal ones. 

I f  there are several censuses a year we have used data 
from August-October as either representing annual peak 
numbers or showing the lowest numbers in bottom years 
of typically cyclic populations. This is further justified by 
the results of Henttonen et al. (1985) who found that cycli- 
city indices based on autumn densities differentiated best 
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between cyclic and non-cyclic populations. However, in sev- 
eral studies only one sample has been taken each year. Such 
data were accepted only if repeated sampling was performed 
at the same time in summer-autumn. 

The index 

s = ] ~ - l ~  2 
[/ n - 1  

where N~ is density or a quantitative density index at the 
same time of the year, has been suggested as an index of 
density variation (" cyclicity index") that is independent of 
sampling method and mean density level (Lewontin 1966; 
Williamson 1972; Stenseth and Framstad 1980). This index 
was demonstrated to correlate positively with the periodici- 
ty in a large set of field data (Henttonen et aL 1985). In 
certain trapping series some index values equalled 0 during 
low years and had to be replaced by a small positive 
number. We used the lowest figures in the trapping series, 
usually 0.l or 0.5 animals/100 trap nights. According to 
our experience these values are of the right order of magni- 
tude. In addition, we also computed the coefficient of varia- 
tion (CV= SD/Y), although this index is more affected by 
trapping methods. Furthermore, because we feel that really 
cyclic microtine populations are characterized by summer 
declines during low years and because such declines may 
not be easily detected at each low phase, we also estimated 
the fractions of  the studies in various regions in Fennoscan- 
dia which contained any clear summer decline. 

In our analysis we divide Fennoscandia in three climatic, 
and hence biogeographic regions: (1) A southern zone (55 
to about 59~ with a mild climate with little snow in 
winter. (2) A transition zone (59-61 ~ that is characterized 
by winters of varying snow depth and duration. (3) A zone 
north of 61~ characterized by 5-8 months of snow each 
year (except at the Norwegian coast) and a typical taiga 
forest in the lowlands and alpine tundra on the mountains. 
Data on local snow conditions were obtained from Johnson 
(1956), Ager (1964) and Solantie (1975, 1977). Two mea- 
sures of snow were used: a mean annual period with snow 
and a mean maximum snow depth. 

Data from southern Fennoscandia were compared with 
data from Great Britain and eastern Europe. As Great Bri- 
tain extends between 50~ and 59~ the area covered in 
eastern Europe was likewise located between 50~ and 
59~ All the Fennoscandian data are compiled in Appen- 
dix A (C. glareolus) and B (M. agrestis). Papers 'with infor- 
mation on density variations (during at least 3 years) in 
western and eastern Europe and North America are listed 
in Appendix C. 

3. Results 

3.1. Fennoscandia 

All correlations between indices of density variations and 
latitude, snow cover and snow thickness were significantly 
positive, and of the same magnitude (Table 1). However, 
because latitude is strongly correlated with both the period 
of snow cover (r=0.96) and snow thickness (r=0.82), it 
is difficult to separate the effects of latitude (i.e. diversity 
and density of sustaining prey) and snow cover (i.e. preda- 
tion efficiency) upon rodent population dynamics. Partial 
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T a b l e  1. Correlation matrix (Spearman's rs) between environmental 
variables predicted to influence vole population stability and two 
measures (s and CV, see text) of population cyclicity in various 
Fennoscandian regions. Significance levels are ** =P<0.01 and 
*** = P < 0.001 

S p e c i e s  Environmental Indices of cyclicity 
variables 

s CV 

Clethrionomys Latitude 0.62*** 0.63*** 
glareolus Snow period 0.64"** 0.68 *** 

Maximum snow 0.65*** 0.70*** 
thickness 

Microtus Latitude 0.61 *** 0.67*** 
agrestis Snow period 0.60*** 0.64*** 

Maximum snow 0.57 ** 0.65 *** 
thickness 

T a b l e  2. Mean values for the cyclicity indexes and distribution of 
summer declines observed in trapping series in various Fennoscan- 
dian regions 

Species Latitude Mean Summer 
cyclicity index decline 

g CV No Yes 

Clethrionomys < 59~ 0.22 0.44 6 1 
glareolus 59-61~ 0.47 0.78 4 3 

>61~ 0.52 0.92 4 13 

Microtus < 59~ 0.30 0.61 6 0 
agrestis 59-61~ 0.53 0.97 2 6 

>61~ 0.62 1.14 1 9 

correlations become very low due to the high correlations 
between latitude and the two snow variables. They were 
highest between C. glareolus indices and snow thickness 
(rk = 0.41) and between M. agrestis indices and latitude (rk = 
0.32). However, we can mainly state that the cyclicity in- 
creased with both latitude and snow cover. 

The mean cyclicity values increased from the southern 
region over the transition zone to the northern region (Ta- 
ble 2). That the increase from the southern region to the 
transition zone was greater in both species than from the 
transition zone to the northern taiga implies that there may 
be a "cyclicity threshold" bordering the transition zone. 
This is also reflected in the proportion of summer declines 
(Table 2) in intense studies with both spring and autumn 
trappings. There were clear differences between the south- 
ern zone and the northern taiga zone for both C. glareolus 
(P=  0.009, Fisher's exact probability test) and M. agrestis 
(P = 0.001). The transition zone did not deviate significantly 
from either of the other zones, except from the southern 
zone for M. agrestis (P = 0.009). If the data from the transi- 
tion zone are added either to those from the southern zone 
or the northern taiga zone, then the difference in relation 
to either the north or south remains significant for both 
species (P's 0.01-0.02, except for M. agrestis when the tran- 
sition zone is added to northern taiga; P=0.006). These 
patterns imply that the transition zone is really intermedi- 
ate, or may have more in common with the northern taiga 
zone than with the southern zone. 

3.2. Western and eastern Europe 

Southern Scandinavian C, glareolus did not show any sig- 
nificantly different pattern in density variation from British 
populations (Mann-Whitney U-test). Mean s and CV values 
for the southern Scandinavian populations (N=7) were 
0.22 and 0.44 and in Great Britain (N= 10) 0.28 and 0.51, 
respectively. However, the British populations were very 
heterogeneous and at least one showed a summer decline. 
Two German studies (Schmidt 1975; Stubbe 1982) showed 
s=0.29 and 0.40 (CV=0.55 and 0.76). Comparisons be- 
tween southern Scandinavia and the same latitudes in east- 
ern Europe (Poland and U.S.S.R. west of the Urals, N =  28) 
resulted in significant differences (Mann-Whitney U=51  
and 48.5 respectively, P<0.05) for both s and CV with 
most pronounced density variation in eastern Europe (mean 
s=0.31 and mean CV=0.65). Separate calculations were 
performed with data from southern Scandinavia and the 
European part of the U.S.S.R. only with the thicker snow 
cover, but the differences and levels of significance re- 
mained the same. 

Population data for M. agrestis were available only 
from western Europe. Five series from Great Britain did 
not differ from southern Scandinavia (N= 8). The mean 
values of s were 0.32 and 0.30 and of CV 0.64 and 0.61 
for Great Britain and southern Scandinavia, respectively. 
The first study at Lake Vyrnwy (Chitty 1952) showed pro- 
nounced cyclicity (s = 0.95) and a summer decline while later 
studies (Chitty 1962) indicated only seasonal variations (s= 
0.16 and 0.25). Thus, as with C. glareolus, some British 
M. agrestis populations exhibited pronounced density vari- 
ations. Some German M. agrestis populations showed small 
density variations (Kulicke 1956, s=0.25; Schindler 1972, 
s = 0.35). 

3.3. North America 

Four population of C. gapperi from the U.S.A. had mean 
s values of 0.38 and thirteen populations from Canada had 
0.42 (CV=0.73 and 0.92). There was no correlation with 
latitude. No 3-4 year cyclic pattern was observed (cf. also 
Merritt 1981) but in long term studies by Grant (1976) 
and Fuller (1977) series of high and low density years were 
separated by about 10 years. Krebs and Gilbert (1984) also 
found a 10-year interval between peaks in C. rutilus. Fur- 
thermore, according to available information (West 1982; 
Whitney and Feist 1984) C. rutilus, the northern equivalent 
of C. gapperi, is not 3-4 year cyclic in central Alaska near 
Fairbanks at those latitudes where both C. glareolus and 
C. rutilus are strongly 3-4 year cyclic in northern Fenno- 
scandia. The s and CV values for C. rutilus in Alaska were 
0.11 and 0.20, and 0.26 and 0.51 respectively (West 1982; 
Whitney and Feist 1984), which correspond to the low 
southern Scandinavian values for C. glareolus. At about 
the same latitudes in northern Finland and Sweden the s 
and CV values for C. glareolus were 0.56,0.89 and 0.80-2.05 
respectively. Values for C. rutilus were there of the some 
order. 

Most studies of American Microtus populations have 
been conducted south of 50~ (Taitt and Krebs 1985) and 
are thus not strictly comparable with the northern Europe- 
an ones. Taitt and Krebs (1985) divided the fluctuation 
patterns observed in North America into cyclic and annual 
ones. 48% of the years studied showed multiannual cyclic 
patterns in M. pennsylvanicus according to the definition 
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of cyclicity by these authors. In other Microtus species this 
proportion was even lower (e .g .M.  townsendii Bachm. : 
29%). A long-term study (11 years) of M. pennsylvanicus 
in southern Canada (Mihok 1985, 50~ had s=  0.48, which 
is similar to central Fennoscandian M. agrestis. A short- 
term study of M. oeconomus populations at Fairbanks, 
Alaska (Whitney 1976, 65~ gave s=0.75 while longer 
studies (17 years) of the same species at Kilpisj/irvi, Finnish 
Lapland (Tast and Kalela 1971; Henttonen etal.  1977; 
Fig. 2B) resulted in s=0.82 (CV= 1.31 and 1.26 respective- 
ly). In this respect M. oeconomus in central Alaskan taiga 
resembles conspecifics in northern Fennoscandia. The am- 
plitude (peak/low in cyclic populations) in the American 
studies was generally about tenfold (Taitt and Krebs 1985) 
while in northern Fennoscandia it has often been 100-fold 
or more. 

4. Discussion 

We find the clear Fennoscandian correlations with both 
latitude and snow cover convincing, although data used 
in the analysis were obtained by several different trapping 
methods. The CV index of cyclicity gave consistently better 
correlations than the s index, so the variability in the data 
acquisition did not seem to influence the results in any 
profound way. Correlations might have been still better 
but the northernmost records in Fennoscandia were from 
the margins of the distribution of C. glareoIus and M. agres- 
tis and there their abundance, and especially peak numbers, 
will be affected by interspecific competition from other 
small rodents (Henttonen and Hansson 1984). M. agrestis, 
for example, is forced into marginal habitats by M. oecono- 
mus (Tast 1968; Henttonen et al. 1977) and consequently 
the northernmost cyclicity index for M. agrestis was fairly 
low. Environmental heterogeneity in the transition zone is 
another error. The snowy period is relatively short but vari- 
able, and snow cover is shallow along the shores of the 
Baltic, especially far into the mainland in SW Finland. 

One explanation of the gradients in cyclicity in Fenno- 
scandia could be differences in predator-prey relationships. 
The effective element in the hypothesis of population regu- 
lation by predation is a set of alternative prey species for 
generalist predators. These alternative prey may be sus- 
tained by various means, e.g., little snow, a considerable 
proportion of agricultural land (Angelstam et al. 1984) or 
diverse habitats (or landscape heterogeneity, Hansson 1977, 
1979b). Most such conditions are negatively related to the 
severity of the environment. An alternative explanation of 
the trend in cyclicity in Fennoscandia can be based on the 
relations between rodents and variations in plant productiv- 
ity and quality (e.g. Laine and Henttonen 1983). However, 
the present data do not permit us to separate between these 
hypotheses. Laine and Henttonen (1983) and Hansson 
(1984a) discuss reasons why the decline in northern Fenno- 
scandia is probably triggered by changes in food resources. 
But if microtines in northern Fennoscandia followed only 
the rhythms of their food plant species, for example, which 
are in fairly good but not in total synchrony, more interspe- 
cific variation in the decline should be expected among sym- 
patric mierotine species due to specific feeding preferences. 
Instead, all sympatric microtine species (up to 8 species 
in a community) in northern Fennoscandia have the deepest 
low phase simultaneously (Hansson 1969; Tast and Kalela 
1971; Henttonen et al. 1977; Hansson et al. 1978; Laine 

and Henttonen 1983; Henttonen in prep.), a fact consistent 
with the role of specialist predators (small mustelids, cf. 
also Oksanen and Oksanen 1981; Hansson 1984b; Hent- 
torten 1985). The cyclic synchrony of sympatric microtines 
decreases southwards, and in the transition zone sympatric 
C. glareolus and M. agrestis may or may not be in phase 
(Korpimfiki 1981 ; Pankakoski 1984; Hansson in prep.). In 
any case, we discuss our data further without denying any 
effect of possible multiannual variation in plant production 
on microtine cycles. 

Stable populations of microtines in southern Fenno- 
scandia and central Europe appear to be controlled by gen- 
eralist predators (Hansson 1979a; Erlinge et al. 1983), and 
during seasonal lows of voles these predators are supported 
by alternative prey. C. glareolus is generally adapted to 
mature forest habitats with a more complex fauna of preda- 
tors and alternative prey, while Microtus spp. are colonists 
of disturbed areas and early successional plant communities 
with a less complex fauna. Southern Microtus populations 
may therefore be more likely to show cyclic behaviour than 
corresponding Clethrionomys populations. There were some 
clearly cyclic microtine populations also in western Europe. 
One example is the early M. agrestis population at Lake 
Vyrnwy which later seemed to change to a non-cyclic one 
(Chitty 1952; Chitty and Chitty 1962). This change followed 
an alteration in the landscape from a vast area with aban- 
doned fields and conifer seedlings to diverse forest habitats 
interspersed with open fields. The predator and alternative 
prey community might have showed a pronounced develop- 
ment during this landscape transition. Other areas in central 
Europe with cyclic populations may be characterized by 
similar conditions, e.g. large agricultural areas in Poland 
harbouring cyclic Microtus arvalis populations (Ryszkowski 
et al. 1973). 

There has been a long-lasting debate whether factors 
intrinsic (e.g. physiological stress or genetic behavioural 
polymorphism) or extrinsic (e.g. food and predation) to 
microtine populations cause the cyclicity (e.g. Krebs and 
Myers 1974). The clear relationship between the level of 
cyclicity and environmental conditions in Fennoscandia 
seems to demonstrate the overriding importance of extrinsic 
factors. Gradients in cyclicity can hardly be explained by 
any intrinsic factors. On the other hand, microtine popula- 
tions, also at southern latitudes, have obviously the poten- 
tial to become cyclic if environmental conditions (habitat 
structure, fauna, quality of seasonality) permit (Chitty 
1952; Ryszkowski et al. 1973). 

Non-cyclic (or "annual")  population variations have 
been observed in several North American Clethrionomys 
and Microtus species. Merritt (1981) states that "there seem 
to be no 3-4 year oscillation in C. gapperi". This also ap- 
pears to apply to C. rutilus in northern Canada and Alaska. 
No geographical trend in cyclicity has been observed in 
North American Microtus species (Taitt and Krebs 1985) 
but such a trend has been reported for snowshoe hares 
Lepus americanus (Wolff 1980). Thus, there seems to be 
a basic difference in microtine dynamics between Fenno- 
scandia and North America. 

One possible explanation is that in northern North 
America the small (forest) rodents are alternative prey for 
the predators driven by the pronounced snowshoe hare cy- 
cles. Then a 10-year periodicity should be expected in Cleth- 
rionomys in areas with snowshoe hare cycles, but only annu- 
al changes with stable hare or rabbit populations. If so, 
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more than one alternative mechanism could be possible. 
1) Generalist predators might increase during the hare in- 
crease phase until the peak, but will suddenly lose the great- 
est part of their food basis during the first years of the 
hare decline. During these years there should be severe pres- 
sure on small rodents but the latter cannot be supposed 
to sustain these predators for any longer period. Thus, a 
few years after the start of the hare decline, predation pres- 
sure should have lessened considerably and the small ro- 
dents will be free to increase considerably in numbers. Spe- 
cialist predators need a certain period of high small rodent 
numbers in order to reproduce and increase, and a rodent 
peak may appear before hares and generalist predators in- 
crease again. 2) Another alternative is that predation on 
abundant hares releases the pressure from forest microtines, 
but in this case Clethrionomys peaks should coincide with 
the hare peak and earliest decline, and Clethrionomys 
should decline with hares. 3) Yet another possibility is that 
predation by generalist predators on small specialist ones 
at the end of the hare decline will release a Clethrionomys 
increase, and specialist predators would recover after the 
decline of the generalists. In this case a Clethrionomys peak 
should also occur a few years after the hare peak. 

Some data to test these ideas are available. High Cleth- 
rionomys numbers were found a few years after hare peaks 
by Fuller (1977 and pers. comm.) in Canadian NW Territo- 
ries, and by Krebs and Gilbert (1984 and pers. comm.) 
in southern Yukon. Such conditions seem also evident in 
unpublished data supplied by Mihok (pers. comm.) from 
Manitoba. Grant (1976) concluded that peaks in the abun- 
dance of C. gapperi occurred at 10-year intervals in Quebec, 
as they do in the snowshow hare. These data seem to refute 
the second alternative. The third alternative assumes con- 
siderably densities of specialist predators, but at least in 
some Clethrionomys study areas, pygmy weasels, for in- 
stance, are rare (Fuller pets. comm.; Krebs and Gilbert 
pers. comm.). So with the few data available we find the 
first alternative most plausible. 

There is also another difference between Fennoscandian 
and North American vertebrate communities, which might 
stabilize small rodents dynamics in the latter area. Various 
species of hibernating ground squirrels and chipmunks not 
found in Fennoscandia could sustain predators that would 
otherwise prey on microtines in summer. Extreme summer 
declines of the north Fennoscandian type might be pre- 
vented this way. 

We suggest that the driving force in the 3-5 year cycles 
in central and northern Fennoscandia is a microtine-food 
interaction (Kalela 1962; Hansson 1969, 1979a; Tast and 
Kalela 1971 ; Laine and Henttonen 1983). In northern Fen- 
noscandia all predators preying on microtines decline after 
a microtine crash (Pulliainen 1981; Kaikusalo 1982) due 
to shortage of alternative food, and consequently predators 
exhibit a time lag in their response to the microtine increase. 
Also the pattern of game population dynamics, including 

the mountain hare Lepus timidus, in central and northern 
Fennoscandia seems to be a 3-5 year cycle (H6rnfeldt 1978; 
Pulliainen 1982; Angelstam etal.  1984). Bulmer (1974, 
1975) concluded statistically that the driving force in the 
North American 10-year furbearer cycle is the snowshoe 
hare, and several authors have suggested that this cycle 
is caused by an interaction between the hare and its food 
(Keith 1974, 1983; Keith etal. 1984; Bryant 1981) that 
is modified by predators (Keith 1974). In this comparison 
between northern North America and Fennoscandia some 
species are especially interesting. The muskrat Ondatra zi- 
bethicus in North America shows a 10-year pattern (Elton 
and Nicholson 1942; Bulmer 1974, 1975), but as an intro- 
duced species in Europe has, in northern Sweden, a 4-year 
rhythm which seems to be caused by predation by red foxes 
after microtine declines (Danell 1978). In spite of its prefer- 
ence for microtines the American marten in the boreal zone 
is in phase with the snowshoe hare (Bulmer 1975). The 
red fox is another generalist hunting both microtines and 
hares, and its cycle clearly follows that of hares (Bulmer 
1975). In central and northern Fennoscandia the red fox 
and pine marten have 3-4 year cycles (PuUiainen 1981; 
Kaikusalo 1982; Angelstam et al. 1984). 

In this context we would also draw attention to the 
differences in the quality and quantity of snow between 
northern North America, and central and northern Fenno- 
scandia. Over large areas of boreal North America the 
winter climate is continental, resulting in a powder-like soft 
snow cover, which in many areas is not very thick. On 
the other hand, warm spells are common in the more mari- 
time Fennoscandian winter; the thick snow cover is dense 
and often encrusted. These differences probably also influ- 
ence the hunting success of generalist predators. Differences 
in the thickness of snow cover in North America are not, 
however, large enough to cause clear differences in the fluc- 
tuation pattern of Clethrionomys, since the few study areas 
with very thick snow cover (Weckwerth and Hawley 1962; 
Merritt 1978) have annual patterns similar to regions with 
less snow. 

The increasing stability of microtine populations to- 
wards southern, more diverse, biotic communities fits well 
with the old paradigm, "diversity begets stability", being 
forcefully contradicted during recent years (e.g. May 1973; 
Goodman 1975; Pimm 1982). However, in the present con- 
text a "sub-community" consisting of generalist predators 
and several abundant alternative prey species (obviously 
from different taxonomic and ecological groups, e.g. micro- 
tines, hares and squirrels) is considered to cause stability 
and no relationship is assumed to the total biotic commun- 
ity. An equally large sub-community of many specialist pre- 
dators and one main prey species or species group (e.g. 
microtines) is predicted to cause instability. Thus, the quali- 
ty and not the quantity of species constituting an interacting 
unit seems to be important for the numerical stability of 
separate species populations. 
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Reference Locality Years s CV Summer 
decline 

Hansson 1974 Bj6rnstorp, S, 55.5 ~ 1968-72 0.15 0.38 No 
Hansson 1979a Bj6rnstorp, S, 55.5 ~ 1971-75 0.49 0.58 Yes 
Hansson 1979a Stensoffa, S, 55.5 ~ 1971-75 0.17 0.40 No 
Hansson 1967 Lund, S, 55.5 ~ 1963-66 0.11 0.24 No 
Bergstedt 1965 Fftgelsfng, S, 55.5 ~ 1958-64 0.29 0.59 No 
Hansson 1971b Kullaberg, S, 56.5 ~ 1964-67 0.08 0.18 No 
Jensen 1982 R6nde, DK, 56.5 ~ 1969-77 0.26 0.68 No 
Curry-Lindahl 1956 Huddinge, S, 59 ~ 1945-55 0.51 0.74 ? 
Hansson 1979a Grims6, S, 59.5 ~ 1972-75 0.44 0.86 Yes 
Wiger 1979 Kviteseid, N, 59.5 ~ 1970-75 0.66 0.97 No 
Pankakoski 1984 Ahtiala, SF, 60 ~ 1975-80 0.34 0.61 ? 
Forsman and Ehrnsten unpubl. Kirkkonummi,  SF, 60 ~ 1978-82 0.50 0.71 No 
Christiansen 1983 South Norway, ~ 60 ~ 1971-77 0.41 0.87 ? 
Hansson 1982 Uppsala, S, 60 ~ 1971-81 0.52 0.83 ? 
Hansson 1980 Garpenberg,  S, 60.5 ~ 1976-79 0.64 0.95 Yes 
Christiansen 1983 West Norway, ~ 61 ~ 1971-77 0.33 0.65 ? 
Hansson 1979a Ockelbo, S, 61 ~ 1971-75 0.44 0.80 No 
Kaikusalo unpubl.  Loppi, SF, 61 ~ 1973-81 0.38 0.63 No 
Lagerstr6m unpubl.  Y16j/irvi, SF, 61.5 ~ 1976-82 0.46 0.67 No 
Lagerstr6m unpubl. Teisko, SF, 61.5 ~ 1976-82 0.16 0.33 No 
Lagerstr6m and H/ikkinen unpubl. Lemp6/il/i, SF, 61.5 ~ 1973-82 0.29 0.48 No 
Kaikusalo unpubl.  Luhanka,  SF, 62 ~ 1957-62 0.38 0.53 ? 
Kaikusalo unpubl.  V/irtsil/i, SF, 62 ~ 1977-80 0.37 0.72 ? 
Ivanter 1975 Carelia, SU, 62 ~ 1948-55 0.45 0.89 ? 
Ivanter 1975 Carelia, SU, 62 ~ 1957-72 0.47 0.96 ? 
Ryssy et al. unpubl.  Sein/ijoki-Veteli, SF, ~ 63 ~ 1977-82 0.45 0.90 ? 
Ryssy et al. unpubl.  Aht/iri-Karstula, SF, 63 ~ 1977-82 0.32 0.89 ? 
Hent tonen unpubl.  Hankasalmi,  SF, 62.5 ~ 1979-82 0.50 0.82 Yes 
Korpim/iki 1981 Kautiavo, SF, 63 ~ 0.31 0.67 
Hansson 1979a Alan/is, S, 64 ~ 1971-75 0.65 0.95 Yes 
Larsson 1976 + Hansson unpubl.  Str6msund, S, 64 ~ 1971-82 0.65 0.85 ? 
Hansson and Larsson 1978 Ringvattnet,  S, 64 ~ 1972-75 0.71 1.24 ? 
H6rnfeldt  1978, 1980 Ume/i, S, 64 ~ 1972-79 0.75 1.00 Yes 
Hent tonen et al. 1977 Sotkamo, SF, 64 ~ 1966-75 0.51 0.98 Yes 
Skar6n 1972 Kuhmo,  SF, 64 ~ 1957-68 0.36 0.68 Yes 
Hansson 1979a Robertsfors, S, 64.5 ~ 1971-75 0.73 1.27 Yes 
Viro 1974 Paljakka, SF, 64.5 ~ 1966-71 0.35 0.67 No 
Christiansen 1983 Nor th  Norway, ~ 65 ~ 1971-77 0.42 0.71 ? 
Viro 1974 Tupos, SF, 65 ~ 1966-71 0.62 1.23 Yes 
Viro 1974 Muhos,  SF, 65 ~ 1966-71 0.56 0.80 Yes 
Gustafson 1983 Ammarn/is,  S, 66 ~ 1975-82 0.89 2.05 Yes 
Hansson 1969 Ammarn/is,  S, 66 ~ 1964-68 0.51 1.37 ? 
Kaikusalo unpubl.  Kolari, SF, 67 ~ 1976-80 0.53 0.85 Yes 
Koshkina 1966, Semenov-Tjan-Sjankij 1970 Kola S coast, SU, 67.5 ~ (25) 0.85 1.22 ? 
Hent tonen unpubl.  Pallasj/irvi, SF, 68 ~ 1970-82 0.85 1.12 Yes 

Appendix B 
Cyclicity indexes of Microtus agrestis in Fennoscandia 

Reference Locality Years s C V Summer 
decline 

Hansson 1974 Bj6rnstorp, S, 55.5 ~ 1968-72 0.22 0.39 No 
Hansson 1979a Bj6rnstorp, S, 55.5 ~ 1972-75 0.32 1.00 No 
Hansson unpubl. Stensoffa, S, 55.5 ~ 1971-80 0.18 0.39 No 
Erlinge et al. 1983 Revinge, S, 55.5 ~ 1974-77 0.49 0.77 No 
Hansson 1971 a Sj6torp, S, 55,5 ~ 1964-70 0.28 0.51 No 
Nygren 1980 + Hansson unpubl. Stensoffa, S, 55.5 ~ 1975-78 0.24 0.63 ? 
Christensen 1978 Tipperne, DK,  56 ~ 1972-75 0.32 0.66 ? 
Hansson 1971a Kullaberg, S, 56.5 ~ 1964-68 0.31 0.50 No 
Curry-Lindahl 1956 Huddinge, S, 59 ~ 1945-55 0.37 0.71 ? 
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Appendix B (continued) 

Reference Locality Years s C V Summer 
decline 

Hansson 1979a Grims6, S, 59.5 ~ 1972-75 0.24 0.67 No 
Myllym/iki 1977 Ahtiala, SF, 60 ~ 1968-71 0.61 0.90 No 
Pankakoski 1984 Ahtiala, SF, 60 ~ 1975-80 0.51 1.05 ? 
Forsman and Ehrnsten unpubl. Kirkkonummi, SF, 60 ~ 1978-82 0.65 1.13 Yes 
Christiansen 1983 South Norway, ~ 60 ~ 1971-77 0.46 1.00 ? 
Myllym/iki 1977 Ingels, SF, 60 ~ 1958-62 0.85 1.15 Yes 
Hansson unpubl. Uppsala, S, 60 ~ 1973-80 0.56 0.97 Yes 
Hansson 1980 Garpenberg, S, 60.5 ~ 1976-79 0.75 1.04 Yes 
Kaikusalo unpubl. Hansjgrvi, SF, 61 ~ 1973-78 0.15 0.24 Yes 
Christiansen 1983 West Norway, ~ 61 ~ 1971-77 0.65 1.10 ? 
Hansson 1979a Ockelbo, S, 61 ~ 1971-75 0.56 1.67 Yes 
Lagerstr6m unpubl. Teisko, SF, 61.5 ~ 1977-82 0.19 0.52 No 
Myllym/iki 1977 Central Finland, ~ 62 ~ 1969-76 0.54 1.10 Yes 
Kaikusalo unpubl. Luhanka, SF, 62 ~ 1957-62 0.54 0.66 
Kaikusalo unpubl. V/irtsilfi, SF, 62 ~ 1977-80 0.41 0.88 ? 
Ivanter 1975 Carelia, SU, 62 ~ 1948-72 0.64 1.30 ? 
Ryssy et al. unpubl. Seinfijoki-Veteli, SF, ~ 63 ~ 1977-82 0.48 0.88 ? 
Ryssy et al. unpubl. Aht/iri-Karstula, SF, 63 ~ 1977-82 0.72 0.98 
Hansson unpubl. Alan/is, S, 64 ~ 1971-80 0.52 0.81 Yes 
Henttonen et al. 1977 Sotkamo, SF, 64 ~ 1972-75 0.95 0.91 Yes 
Nygren 1980 Umefi, S, 64 ~ 1974-78 0.69 1.40 Yes 
Hansson and Larsson 1978 Ringvattnet, S, 64 ~ 1972-75 0.59 1.24 Yes 
Larsson 1976 Str6msund, S, 64 ~ 1972-75 0.83 1.46 ? 
Hansson 1979a Robertsfors, S, 64.5 ~ 1971-75 0.63 1.15 Yes 
Larsson and Hansson 1977 Robertsfors, S, 64.5 ~ 1972-75 0.57 1.18 Yes 
Christiansen 1983 North Norway, ~ 65 ~ 1971-77 0.65 1.13 ? 
Heikura and Lindgren 1979 Oulu, SF, 65 ~ 1966-74 0.64 1.17 Yes 
Hansson 1969 Ammarn/is, S, 66 ~ 1964-68 0.71 1.64 ? 
Henttonen unpubl. Pallasj/irvi, SF, 68 ~ 1970-82 0.94 1.66 ? 
Henttonen et al. 1977 Kilpisj/irvi, SF, 69 ~ 1959-75 0.50 1.52 Yes 

Appendix C 

Literature data on small rodent fluctuation patterns outside Fen- 
noscandia 

Great Britain: Ashby 1966; Brown 1964; Chitty 1952; Chitty 
and Chitty 1962; Flowerdew and Gardner 1978; Jewell 1966; 
Montgomery 1979; Newson 1963; Smyth 1968; Southern and 
Lowe 1982; Tanton 1969. 

East Europe (only Clethrionomys glareolus): Andrzejewski 
1975; Bobek 1973; Grodzinski et al. 1970 and Ryszkowski 1971 
for Poland and a compilation of many papers from U.S.S.R. in 
Bashenina (1981). 

North America: Mainly literature cited by Merritt (1981) on 
Clethrionomys gapperi and by Taitt and Krebs (1983) on Microtus 
spp. 
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